
FORAY: Towards Effective Attack Synthesis against Deep Logical
Vulnerabilities in DeFi Protocols

Hongbo Wen
hongbowen@ucsb.edu

University of California, Santa
Barbara

Santa Barbara, California, USA

Hanzhi Liu
hanzhi@ucsb.edu

University of California, Santa
Barbara

Santa Barbara, California, USA

Jiaxin Song
jiaxins8@illinois.edu
University of Illinois
Urbana-Champaign

Champaign, Illinois, USA

Yanju Chen
yanju@cs.ucsb.edu

University of California, Santa
Barbara

Santa Barbara, California, USA

Wenbo Guo
henrygwb@ucsb.edu

University of California, Santa
Barbara

Santa Barbara, California, USA

Yu Feng
yufeng@cs.ucsb.edu

University of California, Santa
Barbara

Santa Barbara, California, USA

Abstract

Blockchain adoption has surged with the rise of Decentralized
Finance (DeFi) applications. However, the significant value of dig-
ital assets managed by DeFi protocols makes them prime targets
for attacks. Current smart contract vulnerability detection tools
struggle with DeFi protocols due to deep logical bugs arising from
complex financial interactions between multiple smart contracts.
These tools primarily analyze individual contracts and resort to
brute-force methods for DeFi protocols crossing numerous smart
contracts, leading to inefficiency.

We introduce Foray, a highly effective attack synthesis frame-
work against deep logical bugs in DeFi protocols. Foray proposes a
novel attack sketch generation and completion framework. Specif-
ically, instead of treating DeFis as regular programs, we design a
domain-specific language (DSL) to lift the low-level smart contracts
into their high-level financial operations. Based on our DSL, we
first compile a given DeFi protocol into a token flow graph, our
graphical representation of DeFi protocols. Then, we design an
efficient sketch generation method to synthesize attack sketches
for a certain attack goal (e.g., price manipulation, arbitrage, etc.).
This algorithm strategically identifies candidate sketches by finding
reachable paths in Token Flow Graph (TFG), which is muchmore effi-
cient than random enumeration. For each candidate sketch written
in our DSL, Foray designs a domain-specific symbolic compila-
tion to compile it into SMT constraints. Our compilation simplifies
the constraints by removing redundant smart contract semantics.
It maintains the usability of symbolic compilation, yet scales to
problems orders of magnitude larger. Finally, the candidates are
completed via existing solvers and are transformed into concrete
attacks via direct syntax transformation. Through extensive experi-
ments on real-world security incidents, we demonstrate that Foray
significantly outperforms Halmos and ItyFuzz, the state-of-the-art
(SOTA) tools for smart contract vulnerability detection, in both
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effectiveness and efficiency. Specifically, out of 34 benchmark DeFi
logical bugs that happened in the last two years, Foray synthesizes
27 attacks, whereas ItyFuzz and Halmos only synthesize 11 and 3,
respectively. Furthermore, Foray also finds ten zero-day vulnera-
bilities in the BNB chain. Finally, we demonstrate the effectiveness
of our key components and Foray’s capability of avoiding false
positives.
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1 Introduction

Decentralized Finance (DeFi) applications have driven a surge in
blockchain adoption by offering real-world financial services like
lending, borrowing, and trading on blockchain networks. This has
brought in a broader user base and increased interest in blockchain
technology, with a total funding amount of more than $90 billion
locked in DeFi applications as of March 2023 [24]. Nonetheless, the
substantial value of digital assets under the management of DeFis
renders them an enticing target for potential attacks. For instance,
the recent price manipulation vulnerability [9, 21, 54] allows mali-
cious actors to induce DeFi protocols (a set of smart contracts that
realize a certain financial model) to execute transactions that are
detrimental to user’s funds. Furthermore, attackers can manipulate
DeFi protocols to instigate exchanges from lower-valued assets
to higher-valued ones or to secure significant loans, often using
low-value assets as collateral. This manipulation is achieved by
tampering with the circulation of tokens, thus influencing token
prices in the process. Statistics from the incomplete hack event

https://orcid.org/0000-0003-3517-445X
https://orcid.org/0000-0002-7027-8302
https://orcid.org/0000-0002-4847-9183
https://orcid.org/0000-0002-6494-3126
https://orcid.org/0000-0002-6890-4503
https://orcid.org/0000-0003-1000-1229
https://doi.org/10.1145/3658644.3690293
https://doi.org/10.1145/3658644.3690293


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hongbo Wen et al.

database [23] show that attacks exploiting logical flaws of financial
models behind DeFis (denoted as deep logical bugs) have resulted
in a cumulative loss of up to $200 million over the past two years.

Improving the robustness of DeFi protocols is thus a pressing
concern and there has been a flurry of research [10, 19, 31, 42, 57] in
the past few years. However, the majority of current detection tools
primarily concentrate on code vulnerabilities of a single contract,
such as re-entrancy, integer overflow, access control, etc. Therefore,
it is unsurprised that these tools cannot be employed effectively to
identify DeFi attacks stemming from logic flaws. The complexity
of multiple contracts in DeFi and their interactions dramatically
increase the search space that goes beyond the capability of exist-
ing analyzers. To make things even worse, the smart contracts in
DeFis are immutable – once they are deployed, fixing their bugs is
extremely difficult due to the design of the consensus protocol.

We introduce Foray, a synthesizer for automatically generat-
ing exploits against deep logical bugs in DeFi protocols. Foray
introduces an attack sketch generation and completion framework.
It first generates incomplete attack sketches written in our DSL.
Then, it leverages our proposed domain-specific symbolic compila-
tion approach to compile the attack sketches with logical holes into
constraints that can be solved by off-the-shelf solvers. Finally, it fills
the holes with a SOTA solver and transforms the complete sketches
into concrete attacks through a direct syntax transformation.

The key technical challenges are two-fold. First, existing tools
cannot strategically generate sketches for DeFi beyond random enu-
meration. Second, current symbolic compilation tools treat DeFi
as a collection of regular smart contracts, disregarding the high-
level financial models in DeFi protocols. To mitigate the first chal-
lenge, given a DeFi protocol, Foray first compiles it into a Token
Flow Graph (TFG), our proposed high-level semantic representation
for DeFi protocols. Here, nodes represent different tokens (USDC,
WETH, USDT, etc.) and edges are labeled with constructs from
Foray’s abstract financial language, which provides high-level oper-
ators (e.g., lend/borrow/pay/swap) over financial assets. Now, given
a particular attack goal (e.g., price manipulation, arbitrage, etc.)
in the form of a logical formula, Foray models the attack sketch
generation as a reachability problem in TFG. Instead of random
enumeration, Foray devises an effective sketch generation algo-
rithm that strategically enumerates relevant attack sketches using
a type-directed graph reachability algorithm over the TFG.

To tackle the second challenge, Foray employs a domain-specific
symbolic compilation strategy, which maintains the usability of
symbolic compilation, yet scales to problems orders of magnitude
larger. For each candidate attack sketch, Foray leverages the ab-
stract semantics of our proposed DSL to compile possible comple-
tions of the sketch into SMT constraints that can be efficiently
solved by off-the-shelf solvers [20]. Here, our domain-specific sym-
bolic compilation can filter out low-level smart contract semantics
and thus significantly simplify the constraints. Because both our
sketch generation and sketch completion overapproximate the con-
crete semantics of DeFis, Foraymay generate spurious attacks that
fail to achieve the goal. We mitigate this problem by incorporat-
ing a CEGIS (Counter Example-Guided Inductive Synthesis) loop
that iteratively adds the root cause of the failed attempt to Foray’s
knowledge base, which avoids similar mistakes in future iterations.

We implement Foray and compare it against Halmos [2] and
ItyFuzz [52], the state-of-the-art tools for analyzing smart con-
tracts and DeFi protocols. Our experiment shows that our tool is
efficient and effective. On the set of 34 security incidents in the
past two years, Foray manages to synthesize attacks for 79% of the
benchmarks with an average synthesis time of 105.9 seconds. On
the other hand, Halmos can only solve 10% of the benchmarks with
an average running time of 8085.0 seconds, which demonstrates
that Foray’s domain-specific symbolic compilation accelerates syn-
thesis several orders of magnitude compared to the general-purpose
compilation to an SMT solver. Furthermore, we also apply Foray
to DeFi protocols on the BNB chain [7] and uncover ten zero-day
vulnerabilities with concrete attacks. Finally, we verify the effective-
ness of sketch generation and completion through an ablation study
and demonstrate Foray’s capability in alleviating false positives.
Overall, Foray provides a novel attack synthesis technique against
various types of deep logical bugs in DeFis protocols.

In summary, this paper makes the following contributions:

• WeproposeAbstract Financial Language, a DSL that describes
high-level financial operators in DeFis. We also design Token
Flow Graph, a semantic representation that summarizes the
financial model of a DeFi protocol.
• We propose an effective CEGIS framework for DeFi attack
synthesis. In particular, our sketch generation leverages a
type-directed graph reachability over a token flow graph and
our sketch completion designs a domain-specific symbolic
compilation strategy that results in easy-to-solve constraints.
• We implement the proposed ideas in a tool called Foray and
demonstrate that it achieves several orders of magnitude
speed-up compared to general-purpose symbolic compila-
tion. Furthermore, Foray not only generated 80% security
incidents in the past two years (2022-2023) but also detected
ten zero-day DeFi vulnerabilities from popular blockchains.

2 Background

2.1 Blockchain basis.

Ethereum. Blockchain functions as a decentralized record-keeping
platform that chronicles and disseminates transaction data among
multiple users. It is an expand-only chain of interconnected blocks,
managed by a consensus mechanism, where each block contains
a collection of transactions. Among various blockchain systems,
Ethereum [61] is the first blockchain capable of storing, manag-
ing, and running Turing-complete scripts, termed smart contracts.
Ethereum operates on a comprehensive state system updated via
transaction execution. The transactions are initiated by and received
by users through their accounts. Ethereum has two principal types
of accounts: those owned by users and those governed by smart
contracts, each associated with a distinct address. Besides making
transactions, users can also develop customized smart contracts
that are programmed to execute transactions autonomously.
Tokens and cryptocurrencies. Among different types of smart
contracts, Tokens are a specific type that represents cryptocurren-
cies. Each Token contract must adhere to standardized interfaces
like ERC20 [59], ERC721 [27], and ERC1155 [51], which define how
users interact with the corresponding token. For Ethereum, ERC20
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is the most widely adopted interface. To tether the value of cryp-
tocurrencies to fiat currency, stablecoins—like USDT [55], which
is implemented as an ERC20 token–have been created. They are
pegged to the dollar reserves held by the issuer, providing a stable
reference point for the value of other cryptocurrencies.

2.2 Decentralized Finance (DeFi)

Decentralized Finance (DeFi) refers to a set of financial applications
built on blockchain technology. They aim to recreate traditional
financial systems, such as banking and lending, but without the
need for intermediaries like banks or brokers. Instead, each DeFi
service is implemented as a protocol that amalgamates various
smart contracts. Users access a DeFi service by engaging with the
corresponding protocol through transactions. According to a recent
survey [22], over 200 DeFi applications have been launched on the
Ethereum platform. Here we list three major DeFi applications:
Lending. platforms (such as Aave [3], MakerDAO [43]) enable
users to obtain on-chain cryptocurrencies as loans by depositing
collateral into the system. The interest rates for borrowing are set
by the DeFi protocols while maintaining transparency for users. As
market conditions fluctuate, the collateral’s value may fall below
or rise above a certain threshold. When this happens, either the
application or other users can liquidate or sell the collateral to gain
profits.
Flash loans. (e.g., dYdX [25], Uniswap [58]) represent a collateral-
free borrowing model. This enables the borrower to run custom
code through a callback function, with the stipulation that the loan
must be repaid within the same transaction. If the borrower fails
to return the loaned tokens, the lender will automatically reverse
the lending transaction, ensuring that no permanent changes (to
storage variables) are made by this transaction.
Decentralized exchanges (DEXs). function as cryptocurrency
exchanges that enable users to trade various tokens through direct
interaction with smart contracts. These platforms incentivize users
to deposit pairs or multiple tokens into a liquidity pool. As long
as the pool maintains sufficient token volume, users can execute
token swaps within it. The exchange rate for these trades is deter-
mined autonomously by the application’s built-in pricing algorithm.
Popular DEXs protocols include 1inch [1], PancakeSwap [49].
DeFi vulnerabilities. At a high level, there are two types of vul-
nerabilities in DeFi protocols. The first type refers to vulnerabilities
in individual smart contracts, including assertion failures, arbitrary
writes, control-flow hijacking, etc (denoted as common vulnera-
bilities). These vulnerabilities are similar to traditional software
security bugs and are possible to be automatically detected by ana-
lyzing the smart contract code. As discussed in Section 10, existing
research works propose a number of tools that utilize static and
dynamic program analysis to automatically identify such vulnera-
bilities. The second type of vulnerability exploits logical flaws in
a DeFi protocol, which we refer to as deep logical bugs in this
paper. As demonstrated in Section 3, these deep logical bugs exploit
public functions across multiple smart contracts within the DeFi
protocol to maliciously increase an attacker’s profits. Identifying
such vulnerabilities is extremely challenging because it requires a
deep understanding of the semantics and business logic of the DeFi
protocol, as well as the composition of transaction sequences. As

...
function _mu_bond_quote(uint256 amount) internal view returns (uint256) {
    (uint112 reserve0, uint112 reserve1, ) = uniswap.getReserves(); 
    uint256 amountIN = uniswap.getAmountIn(amount, reserve1, reserve0);
    uint256 amountOUT = uniswap.getAmountOut(amount, reserve0, reserve1);
    uint256 mu_bond_amount = (amountIN + amountOUT) / 2;
    return mu_bond_amount;
}
function mu_bond(uint256 amount) public {
    uint256 mu_bond_amount = _mu_bond_quote(amount);
    IERC20(_USDCe).transferFrom(msg.sender, address(this), amount);
    IERC20(_Mu).transfer(msg.sender, mu_bond_amount);
}
...

contract Attacker {
    ...
    function attack() external {
        lender.flashloan(mu, 24945e18);
        uniswap.swap(mu, usdce, 24944.5e18, 1);
        mubank.mu_bond(13876e18);
        lender.payback(mu, 25019.835e18);
    }
    ...
}

concrete attack

function swap(address fromToken, 
address toToken, uint256 amountIn, 
, uint256 minAmountOut) { ... }

source code: Uniswap

function flashloan(address token, 
uint256 amount) { ... }

source code: DeFiLender

source code: Mubank 

Figure 1: Illustration of MUMUG and a concrete exploit

against it. IERC20().transferFrom and IERC20().transfer are

standardAPIs that enable thewithdraw and deposit of tokens

for one address. uniswap.getAmountIn and uniswap.getAmountOut

are uniswap APIs that calculate the required amount to swap

one type of token for another based on their current reserves.

shown in recent studies [65, 67], most existing tools designed for
smart contract vulnerabilities fail to detect deep logical bugs.

3 Problem Definition and Existing Solutions

In this section, we begin by specifying our problem scopes and
demonstrating a deep logical bug of a simplified DeFi protocol,
MUMUG, which was hacked in 2022, resulting in the loss of nearly
all its stablecoins. Then, we formally define DeFi attack synthesis
and discuss the limitations of existing solutions.

3.1 Problem Scope and Technical Challenges

Threat model. Our goal is to detect deep logical bugs in a DeFi
protocol by synthesizing a sequence of attack transactions that can
exploit the DeFi protocol to gain profits maliciously. We assume
an entirely trustless setup where an attacker can access all pub-
lic information, including but not limited to on-chain blockchain
states and the victim contracts’ source code. For contracts with
only bytecodes, their source code can be obtained via reserve en-
gineering, which is not our focus. Additionally, beyond directly
interacting with the victim contracts, we assume the attacker can
deploy their own contract, which can invoke public transactions
of the target victim contracts (either directly or through callbacks).
The attacker’s goal is to synthesize a sequence of transactions that
exploit the logical flaws in the target DeFi protocol to gain extra
profit. We do not consider the common vulnerabilities.
MUMUG protocol and an attack. As shown in Figure 1, the
protocol is composed of three key smart contracts: a) DeFiLender
provides the flashloan function to enable the borrower to get to-
kens without collateral; b) Mubank with two functionalities. The
internal function (_mu_bond_quote) manages the sale and price of
MU tokens based on the current reserves of MU and USDCe. It
takes as input the amount of USDCe and outputs the corresponding
amount of MU in the same value. The public function (mu_bond) en-
ables users to withdraw MU by providing the same value of USDCe
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determined by _mu_bond_quote. c) Uniswap is a popular protocol,
which defines swap pairs for two types of tokens (e.g., MU and
USDCe). Its swap function enables users to exchange tokens in a
swap pair. These three smart contracts define the MUMUG DeFi
protocol where benign users can borrow, withdraw, and exchange
MU with USDCe.

The susceptibility of MUMUG lies in the pricing mechanism in
the Mubank contract (highlighted in Figure 1). Given that the price
of MU is determined by the reserve of USDCe and MU within the
swap pair. A significant fluctuation in the reserve level can result in
an unexpectedly high volume of MU tokens and significantly lower
its price. An attack can leverage the price difference to withdraw
the MU bank’s stablecoins. A concrete attack is shown in Figure 1.
1 Borrow a huge amount of MU tokens through the flashloan func-
tion in DeFiLender. 2 Swap those MU tokens to a large amount of
USDCe at the swap pair. This will dramatically increase the reserve
balance ratio of MU to USDCe, devaluing the MU. 3 Leverage the
abnormal reserve balance ratio to swap a tiny amount of USDCe
for a huge amount of MU tokens at MuBank. 4 Pay MU tokens back
to the flash loan lender, keeping the majority of USDCe acquired at
step 2 as the profit. Through this process, the attacker harvested
approximately 57,660 USDCe from the MuBank.
Formal definition of attack synthesis for deep logical bugs.

Automatic attack synthesis in DeFi is equivalent to finding a se-
quence of function calls that exploit deep logical bugs of the DeFi
protocol. This can be formally defined as

Definition 3.1 (DeFi Attack Synthesis). An attack synthesis for a
DeFi protocol 𝐷 is a tuple (𝐿, 𝑆0,𝜓 ), where 𝐿 is the domain-specific
language (DSL) for constructing the attack program. For instance,
a list of public functions is provided by the victim DeFi protocol.
𝑆0 is the initial and public blockchain state, and𝜓 is the attack goal
written in a logical formula. DeFi attack synthesis is equivalent to
finding an attack program 𝑃 written in DSL 𝐿, such that 𝑃 (𝑆0) |= 𝜓

where 𝑃 (𝑆0) denotes the resulting state after executing 𝑃 on 𝑆0.

Technical challenges. It is extremely challenging for the follow-
ing two reasons. First, the search space is huge. In fact, MUMUG pro-
tocol itself contains 26 public functions and the attackers can freely
call public functions of other smart contracts (e.g., uniswap.swap).
Even when we constrain the length of the function call sequence,
the number of possible sequences is still extremely huge. Searching
a malicious function call sequence in such a huge search space is
equivalent to finding a needle in a haystack. Second, smart contracts
and DeFi protocols have complicated semantics. This imposes extra
challenges to automatically represent a DeFi protocol with logical
representations, making it hard to reason and synthesize attacks.

3.2 Existing Solutions and Limitations

While attack synthesis is a novel concept in DeFi, it has been ex-
plored in traditional software security and program synthesis do-
mains [29–31]. Without any heavy customization, we can draw
inspiration from traditional program synthesis and try to solve the
problem with the following two solutions.
Static analysis and symbolic execution based-sketch genera-

tion and completion. Given that synthesizing the entire attack
program from scratch is unlikely to scale, existing works in program
synthesis usually decompose the synthesis into two phases sketch

generation and sketch completion. Here, an attack sketch refers to
a sequence of actions, where each action is a function call to a
certain smart contract. Formally, we define an attack sketch 𝑃 as
a sequence of invocations to constructs in 𝐿 where some of the
constructs contain holes or symbolic variables yet to fill in.

To avoid exploring sketches doomed to fail, existing approaches
typically leverage the abstract semantics to only preserve sketches
whose abstract semantics are consistent with the attack goal 𝜓 ,
𝑃 (𝑆0) ⇒ 𝜓 , where 𝑃 (𝑆0) corresponds to the program state by ab-
stractly evaluating the sketch 𝑃 on 𝑆0. Then, the sketch completion
step fills in the holes ⋄ in each feasible sketch 𝑃 (𝑃 = 𝑃 [𝜇/⋄]) with
language constructs 𝜇 in 𝐿 using symbolic execution, such that
𝑃 (𝑆0) |= 𝜓 . Each hole in Foray represents a function parameter. By
resolving these parameters, the attack sketch is transformed into a
concrete program and its execution result satisfies the attack goal.

The main challenges of this solution are as follows: First, there
are no existing tools in DeFi that can effectively generate feasible
attack sketches. The only way is to randomly select and combine
function calls, which is extremely inefficient given the huge search
space. Second, due to the complex semantics of DeFi protocols, the
corresponding symbolic constraints of attack goals are intricate
and often beyond the reasoning capacity of SOTA SMT solvers.
Specifically, to verify 𝑃 (𝑆0) |= 𝜓 , existing approaches have to reason
about program 𝑃 by faithfully following the operational semantics
of the host language 𝐿, which contains language features (e.g., gas
consumption and memory models in Solidity.) and low-level details
irrelevant to the synthesis goal. As demonstrated in Section 8, it is
extremely difficult for Halmos [2], a SOTA symbolic testing tool
for Ethereum smart contracts [19, 31, 46], to solve the constraints
for common attacks within a feasible time limit.
Fuzzing. SOTA fuzzers (e.g., ItyFuzz [52] and Smartian [18]) in
smart contracts support synthesizing sequences of actions that
lead to vulnerabilities (violation of DeFi protocol). Fuzzing is more
computationally efficient than symbolic execution-based solutions
but it relies more on random generations and mutations. In addition,
due to DeFis’ complex semantics, existing fuzzers do not have fitness
functions or testing oracles that correspond to specific attack goals
and thus cannot provide proper feedback signals of whether the
current input is valid, making it even more difficult to find valid
attacks through random mutations.

Note that as discussed in Section 10, there are some recent tools
for automatically detecting DeFi protocol vulnerabilities. Most tools
rely on summarizing attack patterns from past attack incidents and
thus are hindered by the limited scope of these patterns. They can
only detect limited types of vulnerabilities and struggle to iden-
tify unseen ones. Among existing tools, DeFiPoser [66] adopts the
methodology of automatic sketch generation and completion. How-
ever, its sketches are generated based on limited heuristics, limiting
its ability to synthesize anything beyond arbitrage scenarios.

Overall, due to the lack in effective searching strategies for attack
generation and domain-specific attack validation mechanism, exist-
ing tools cannot effectively synthesize complicated DeFi attacks.
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Figure 2: Overview of Foray with the demonstrated com-

pleted sketch for the example in Figure 1. In the sketch, swap1

refers to the mn_bond function. swap2 is achieved through the

uniswap.swap function.

4 Overview of Foray

To mitigate the limitations of existing solutions, we design and
develop Foray, a novel DeFi-specific attack synthesis technique to
uncover various deep logical vulnerabilities in DeFi applications.
At a high level, Foray follows the attack sketch generation and
completion methodology but includes multiple customized designs
to enable more effective sketch search and verification. As shown in
Figure 2, we design a domain-specific language to lift the low-level
smart contracts into their high-level financial semantics and models
(e.g., exchanges, lenders, loans). Based on our DSL, we first com-
pile DeFi protocols into abstract representations (token flow graph
construction), which filter out low-level semantics and constrain
the attack sketch space. We design an efficient sketch generation
method based on the graph reachability in the TFG (sketch gener-
ation). Then, we complete a sketch by compiling it into symbolic
constraints and replacing the symbolic variables with concrete as-
signments using an off-the-shelf solver [20] (sketch completion).
Finally, we conduct direct syntax transformation to transform the
complete sketches into concrete attacks. Given that the abstraction
process may over-simplify blockchain states and concrete smart
contract semantics, we conduct an additional validation step to
actually run the synthesized attack. If an attack cannot satisfy the
attack goal, our CEGIS loop will add additional constraints corre-
sponding to the root causes to the solver and avoid similar mistakes
in future iterations.
Token Flow Graph construction (Section 5). The insight of this
component is to lift the low-level semantics of smart contracts to
their high-level financial models. This process filters out a signifi-
cant portion of solidity semantics, reducing the synthesis space and
simplifying the validation process. To do so, we first define Abstract
Financial Language, a domain-specific language for describing high-
level financial operations commonly used by DeFis such as swap,
borrow, payback, transfer, etc. Then given a DeFi protocol, Foray
lifts it to a Token Flow Graph (TFG). As we will show later, this
TFG helps develop effective strategies for attack sketch synthesis.
Motivating by prior work [30, 36, 44] in type-directed program
synthesis, we design each node to represent a certain type of token
in DeFi. To avoid and simplify the complexity due to multi-party
communication, we also introduce the 𝜖 token, a special node that

represents tokens from parties other than the current attacker. Each
edge refers to an operation in our abstract financial language and
its source and target nodes represent the tokens that the operation
needs to consume and produce, respectively. Figure 3 shows the
TFG of the MUMUG protocol. Here the nodes are MU, USDCe, and
𝜖 (i.e., lender of flash loan). The edges are possible operations invok-
ing the three smart contracts in MUMUG. For example, the edge
borrow1 from 𝜖 to MU represents one functionality in flashloan

function, which enables borrowing a certain amount of MU tokens
from the lender, i.e., DeFiLender.
Sketch generation (Section 6.2).

Given a TFG of a victim protocol, an attack goal𝜓 and an initial
state 𝑆0 are both expressed as first-order logic constraints, with 𝑆0
being satisfied by the initial blockchain state and𝜓 being expected
to be satisfied after the attack program’s execution. The goal of this
step is to synthesize an incomplete program 𝑃 in abstract financial
language such that 𝑃 (𝑆0) |= 𝜓 .

Intuitively, an attack sketch 𝑃 outlines the key financial steps to
achieve the attack goal𝜓 . Given the huge space, we need to develop
an effective search strategy that only enumerates the sketches that
are likely to be successful. To do so, we model the problem of
achieving the attack goal as a readability problem in our TFG. We
then design a customized graph readability algorithm to efficiently
enumerate candidate sketches that conform with the attack goal.

In our motivating example, the attack goal is:

𝐵usdce𝑡2 − 𝐵usdce𝑡1 > 0, (1)

stating states the attacker’s balance of USDCe at the end of the
execution (𝑡2) should be greater than his initial balance (𝑡1). The
details of how to infer the attack goal will be introduced in Section 7.

The attack sketch shown in Figure 2 is a feasible candidate sketch
by taking the reachable path of 𝜖 → 𝑀𝑈 → 𝑈𝑆𝐷𝐶𝑒 → 𝑀𝑈 → 𝜖

in the TFG.
Sketch completion (Section 6.3). After synthesizing feasible
attack sketches, our next step is to complete the feasible attack
sketches by substituting all symbolic variables with concrete as-
signments with constants or storage variables. At a high level, we
first design a domain-specific symbolic compilation procedure (mo-
tivated by existing solutions [15, 41, 50]) that soundly compiles a
candidate sketch into a set of constraints that represent the space
of all possible concrete attacks. Then, we conduct the completion
by solving the constraints using an off-the-shelf solver [20]. The
first challenge in this procedure is to constrain the complexity of
symbolic constraints such that they are feasible for existing solvers.
As mentioned above, our abstract financial language and token flow
graph are proposed for tackling this challenge. Representing the vic-
tim protocol and attack sketches in our abstract financial language
significantly simplifies the constraints. The second challenge is how
to leverage cases that fail to pass the verification. We tackle this by
integrating a CEGIS (Counter Example-Guided Inductive Synthesis)
loop into the synthesis process. This step first conducts direct syn-
tax transformation to map the synthesized attack from our abstract
financial language back to solidity code. It then deploys and exe-
cutes the attack code using foundry framework [32] to test whether
the attack goal is achieved in a simulated environment. It constructs
a knowledge base and iteratively adds the root causes of the failed
attempts. We will transform root causes as additional constraints
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Figure 3: Demonstration of token flow graph construction,

graph reachability, and valid attack sketch of MUMUG in

Figure 1. In the TFG, the token nodes (except 𝜖) represent to-

kens owned by the attacker and edges are financial operators

(constructs in abstract financial language).

⟨prog⟩ ::= ⟨stmt⟩+
⟨stmt⟩ ::= ⟨transfer ⟩ | ⟨burn⟩ | ⟨mint⟩ | ⟨swap⟩ | ⟨borrow⟩
⟨transfer ⟩ ::= transfer(token: ⟨token⟩, from: ⟨addr ⟩, to: ⟨addr ⟩,

amt: ⟨expr ⟩)
⟨burn⟩ ::= burn(token: ⟨token⟩, from: ⟨addr ⟩, amt: ⟨expr ⟩)
⟨mint⟩ ::= mint(token: ⟨token⟩, from: ⟨addr ⟩, amt: ⟨expr ⟩)
⟨swap⟩ ::= swap(market: ⟨addr ⟩, src: ⟨token⟩, tgt: ⟨token⟩, in:

⟨expr ⟩, minout: ⟨expr ⟩, to: ⟨addr ⟩)
⟨borrow⟩ ::= with borrow(lender: ⟨addr ⟩, to: ⟨addr ⟩, amt: ⟨expr ⟩)

{⟨stmt⟩+ ⟨payback⟩}
⟨payback⟩ ::= payback(lender: ⟨addr ⟩, to: ⟨addr ⟩, amt: ⟨expr ⟩)
⟨balance⟩ ::= balance(token: ⟨token⟩, of: ⟨addr ⟩)
⟨expr ⟩ ::= ⟨const⟩ | ⟨op⟩(⟨expr ⟩+) | ⟨balance⟩

⟨𝑐𝑜𝑛𝑠𝑡 ⟩ ∈ constants ⟨𝑜𝑝 ⟩ ∈ operators
⟨𝑎𝑑𝑑𝑟 ⟩ ∈ addresses ⟨𝑡𝑜𝑘𝑒𝑛⟩ ∈ tokens

Figure 4: Syntax for our abstract financial language.

to avoid failed sketches in future attempts. Figure 2 demonstrates
a complete attack sketch given by a constrained solver, where the
symbolic variables are filled with concrete values.

As demonstrated Figure 2, Foray also requires inputs𝜓 and 𝑆0
written in first-order logic and a final transformation and validation
component (See Section 6 for more details of these two parts).

5 Token Flow Graph

In this section, we present a new graph abstraction for modeling
flows of tokens within a DeFi environment, which is used to sum-
marize common DeFi behavior, as well as searching for potential
program sketches that satisfy a given attack goal.

5.1 Abstract Financial Language (AFL)

As shown in Figure 4, Abstract Financial Language (AFL) is a
domain-specific language that is designed to model token flows of
common financial operations achieved by DeFi protocols. A pro-
gram ⟨prog⟩written in AFL corresponds to a sequence of statements
composed by the following commonly used financial operators:
• ⟨transfer⟩ models a single transfer of a specific amount of a
token from one address to another.
• ⟨burn⟩ models the destruction of a certain amount of a token
from an address.
• ⟨mint⟩ models the generation of a certain amount of a token
from an address.
• ⟨swap⟩ models the exchange of a certain amount of one
token to another for an address.
• ⟨borrow⟩ models a temporary transfer behavior of a certain
amount of a token from a lender to a borrower’s address. A
⟨payback⟩ statement should always be paired at the end to
model the return of the borrowed tokens.

Note that ⟨burn⟩ and ⟨mint⟩ functions are implemented to con-
trol the total token supply and liquidity, aiming to stabilize its price.
These operations are restricted to specific authorized users. How-
ever, attackers may also leverage these functions via exploitation.

AFL also provides easy syntax and interface for accessing differ-
ent entities from a DeFi environment, including:
• ⟨addr⟩ for referring to one of all available addresses in a given
DeFi environment.
• ⟨token⟩ for referring to one of all available types of tokens in a
given DeFi environment.
• ⟨balance⟩ accesses a token’s balance in a given address.

Note that AFL can represent both benign and malicious behav-
iors. We mainly use it to model attackers in this work.

Example 5.1 (AFL attack program). As shown in Figure 3(d), an
AFL program may include ⟨borrow⟩ and ⟨payback⟩, interspersed
with several ⟨swap⟩ operators in the context. It represents the fol-
lowing attack behavior: initially, borrowing MU tokens from an-
other party 𝜖 , then exchanging MU tokens for USDCe tokens, sub-
sequently swapping these back via another exchange contract, and
finally, repaying the borrowed MU tokens to the environment 𝜖 .

5.2 Definition of Token Flow Graph

Wepropose a Token FlowGraph (TFG) tomodel changes in amounts
of abstract tokens owned by the attacker when interacting with pub-
lic functions of DeFi protocols. It helps filter out low-level semantics
of smart contracts and guides the synthesis of attack sketches. To
formally define TFG, we first introduce the following domains:
• 𝔽 is a set of public DeFi functions accessible by the attacker. We
assume all non-public functions are resolved by inlining.
• ℙ contains all AFL operators, e.g., borrow.
• 𝕋 is a set of different tokens appearing in a given DeFi protocol,
i.e., nodes in TFG.
• 𝔼 is a set of edges in TFG.
• Φ is a set of behavioral constraints about logical relations between
tokens, addresses, and AFL operators.
Given the above domains, we define a token flow graph as a

tuple 𝔾(𝕋,ℙ,𝔼,Φ). In particular, 𝔼 ⊆ ×𝕋 × 𝕋 × ℙ × Φ is a set of
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edges connecting tokens, where each edge is associated with an
AFL operator. For clarity in presentation, edges are attached with
superscripts, denoting different functions that they are inferred
from.
Special node 𝜖. Intuitively, the nodes of a token flow graph repre-
sent assets of the user currently interacting with the DeFi. To reflect
and simplify the interactions of other participants (e.g., contract
owners, other users), each token flow graph has a built-in node
𝜖 ∈ 𝕋 that represents tokens of all participants other than the one of
interest (i.e., attacker in our problem). Such tokens are not directly
related to the attacker’s goal but are necessary for the construction
of an attack.

Example 5.2 (TFG for an attacker). Figure 3(c) depicts a TFG
of the MUMUG protocol. For example, an edge labeled with swap1

indicates that the attacker could exchange USDCe for MU through
the function mu_bond in Figure 1.

5.3 Construction of Token Flow Graph

Given a DeFi protocol, the key to constructing a token flow graph
for one specific user is to generate edges among tokens that the
user holds or wants to acquire. Foray employs an edge discovery
procedure based on program analysis. It has two steps, first, we
define flow predicate and influence rules for generating flow predi-
cates from concrete programs of a DeFi protocol. Then, we generate
edges from the predicates using edge inference rules. Each gener-
ated edge comes with a semantically equivalent AFL operation with
its corresponding constraints. As illustrated in Figure 3, we first
identify the flow predicates in the flashloan and mu_bank function,
represented as an initial graph. Then, we apply the edge inference
rules to generate the TFG from flow predicates. For example, the
swap1 is deduced from two token flows in mu_bank. Meanwhile, the
borrow1 and payback1 are inferred from the flashloan function. To
avoid the confusion between AFL statements and actual (solidity)
program statements, we use “operator” to represent AFL statements
𝑝 ∈ P and “statement” to represent actual program statements 𝑠 . In
what follows, we elaborate on the procedure for flow predicate and
edge construction.
Flow predicate. denoted by flow(𝑢, 𝑥, 𝑎, 𝑏), indicates 𝑥 amount of
token 𝑢 flows from address 𝑎 to address 𝑏. A flow predicate serves
as a basic building block of AFL operators. Figure 5 shows the rules
for generating flow predicates from actual (solidity) programs. First,
we define a flow state W that contains a collection of 𝑠𝑖 : 𝑤𝑖 pairs
where each pair 𝑠𝑖 : 𝑤𝑖 represents a statement 𝑠𝑖 together with its
flow predicate 𝑤𝑖 . Note that W is different from the blockchain
state 𝑆 . For each public function 𝑓 ∈ 𝔽, the func rule processes
its statements sequentially by performing a sequence of flow state
transitions. Specifically, given the original state W and a statement
𝑠 , we model the state transition via W

𝑠
⇝ W′, which indicates that

the analysis of statement 𝑠 results in a new versionW′ by adding
the flow predicate corresponding to 𝑠 to W. Similar to classical
symbolic executions [19, 31, 42], all loops are bounded and unrolled
to their corresponding branch statements. The branch rule then
merges updates of W from both branches. Other rules that update
W are: flow-from, flow-to, flow-mint and flow-burn, which correspond
to public functions in standard interfaces (e.g., ERC20):

𝑓 ∈ 𝔽 𝑓 ≡ 𝑠0; ...; 𝑠𝑛 W0
𝑠0
⇝ W1 ... W𝑛

𝑠𝑛
⇝ W𝑛+1

W0
𝑓
⇝ W𝑛+1

(func)

𝑠 ≡ if _ then 𝑓0 else 𝑓1 W
𝑓0
⇝ W0 W

𝑓1
⇝ W1

W
𝑠
⇝ W0 ∪W1

(branch)

𝑠 ≡ 𝑢.transferFrom(𝑎,𝑏, 𝑥 ) 𝑤 ≡ flow(𝑢, 𝑥, 𝑎,𝑏 )

W
𝑠
⇝ W ∪ {𝑠 : 𝑤}

(flow-from)

𝑠 ≡ 𝑢.transfer(𝑏, 𝑥 ) 𝑎 = this 𝑤 ≡ flow(𝑢, 𝑥, 𝑎,𝑏 )

W
𝑠
⇝ W ∪ {𝑠 : 𝑤}

(flow-to)

𝑠 ≡ 𝑢.mint(𝑎, 𝑥 ) 𝑤 ≡ flow(𝑢, 𝑥, •, 𝑎)

W
𝑠
⇝ W ∪ {𝑠 : 𝑤}

(flow-mint)

𝑠 ≡ 𝑢.burn(𝑎, 𝑥 ) 𝑤 ≡ flow(𝑢, 𝑥, 𝑎, •)

W
𝑠
⇝ W ∪ {𝑠 : 𝑤}

(flow-burn)

Figure 5: Flow predicates inference rules. • indicates a special
address. Note that mint and burn has an implicit constraint

that 𝑎 must belong to a set of authorized addresses.

• The flow-from rule can be triggered by invocations of
ERC20’s transferFrom (or other similar) interface, e.g.,
IERC20(u).transferFrom(a,b,x), which transfers 𝑥 amount of
token 𝑢 from address 𝑎 to address 𝑏.
• The flow-to rule can be triggered by invocations of
ERC20’s transfer (or other similar) interface, e.g.,
IERC20(u).transfer(b,x), which transfers 𝑥 amount of to-
ken 𝑢 from the current caller (i.e., the address pointed by this

keyword) to address 𝑏.
• The flow-mint rule matches invocations of ERC20’s mint (or other
similar) interface, e.g., IERC20(u).mint(a,x), which produces 𝑥
amount of 𝑢 token for address 𝑎.
• The flow-burn rule matches invocations of ERC20’s burn (or other
similar) interface, e.g., IERC20(u).burn(a,x), which destroys 𝑥
amount of 𝑢 token from address 𝑎.
After parsing the programs of a DeFi protocol with rules in

Figure 5, we get a set of flow predicates that summarize critical
financial behaviors within that protocol. Foray then constructs the
token flow graph on top of these predicates.
Edge construction. Figure 6 shows the rules for constructing
edges in a token flow graph. Recall that the nodes in a TFG are the
tokens that the user holds or wants to acquire, as well as the 𝑣𝑜𝑖𝑑
node, representing all other parties. The underlying mechanism of
the edge construction procedure is to identify semantic patterns of
flow predicates for each AFL construct. An edge is represented by
edge(𝑢, 𝑣, 𝑝,Φ), where 𝑢 and 𝑣 are addresses, 𝑝 ∈ P corresponds to
an AFL operator andΦ is a set of 𝑝’s behavioral constraints.We have
six types of edges corresponding to different financial operators in
Figure 4. We elaborate on their inference rules as follows:
• The user could exchange tokens with DeFi functions or third-
party APIs from Uniswap, decentralized exchanges, etc. The
edge-swap rule captures such a pattern by looking for a pair of
consecutive back-and-forth flows between two addresses. When
a swap edge is fired, e.g., edge(𝑢, 𝑣, swap,Φ), 𝑢 tokens are sent in
exchange for 𝑣 tokens. We describe such change of tokens for
address 𝑎 using constraints stored in Φ: Φ ≡ 𝑢 [𝑎] ≥ 𝑥 ∧ 𝑢′ [𝑎] ≤
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𝑓 ≡ ...; 𝑠1; 𝑠2; ...
𝑠1 : flow(𝑢, 𝑥, 𝑎,𝑏 ) ∈ W 𝑠2 : flow(𝑣, 𝑦,𝑏, 𝑎) ∈ W

Φ ≡ 𝑢 [𝑎] ≥ 𝑥 ∧𝑢′ [𝑎] ≤ 𝑢 [𝑎] ∧ 𝑣′ [𝑎] ≥ 𝑦 ∧ 𝑣′ [𝑎] ≥ 𝑣 [𝑎]
edge(𝑢, 𝑣, swap,Φ) (edge-swap)

𝑓 ≡ ...; 𝑠1; ...; 𝑠2; ... 𝑠3 ∈ 𝑔 callback(𝑠2, 𝑔)
𝑠1 : flow(𝑢, 𝑥, 𝑎,𝑏 ) ∈ W 𝑠3 : flow(𝑢, 𝑦,𝑏, 𝑎) ∈ W

loan(𝑠1, 𝑠2, 𝑠3 )
(loan)

loan(𝑠, _, _) 𝑠 : flow(𝑢, 𝑥,𝑏, 𝑎) ∈ W
Φ ≡ 𝑢′ [𝑎] ≥ 𝑥 ∧𝑢′ [𝑎] ≥ 𝑢 [𝑎]

edge(𝜖,𝑢, borrow,Φ) (edge-borrow)

loan(_, _, 𝑠 ) 𝑠 : flow(𝑢, 𝑥, 𝑎,𝑏 ) ∈ W
Φ ≡ 𝑢 [𝑎] ≥ 𝑥 ∧𝑢′ [𝑎] ≤ 𝑢 [𝑎]

edge(𝑢, 𝜖, payback,Φ) (edge-payback)

𝑠 : flow(𝑢, 𝑥, •, 𝑎) ∈ W Φ ≡ 𝑢′ [𝑎] ≥ 𝑥 ∧𝑢′ [𝑎] ≥ 𝑢 [𝑎]
edge(𝜖,𝑢,mint,Φ) (edge-mint)

𝑠 : flow(𝑢, 𝑥, 𝑎, •) ∈ W Φ ≡ 𝑢 [𝑎] ≥ 𝑥 ∧𝑢′ [𝑎] ≤ 𝑢 [𝑎]
edge(𝑢, 𝜖, burn,Φ) (edge-burn)

𝑠 : flow(𝑢, 𝑥, 𝑎,𝑏 ) ∈ W Φ ≡ 𝑢 [𝑎] ≥ 𝑥 ∧𝑢′ [𝑎] ≤ 𝑢 [𝑎]
edge(𝑢, 𝜖, transfer,Φ) (edge-transfer)

Figure 6: Edge inference rules. We omit the constraint for 𝑏

in edge-swap, edge-borrow, edge-payback, and 𝑎, 𝑏 in loan.

𝑢 [𝑎]∧, 𝑣 ′ [𝑎] ≥ 𝑦 ∧ 𝑣 ′ [𝑎] ≤ 𝑣 [𝑎], where 𝑢 [𝑎] and 𝑣 [𝑎] denote 𝑎’s
balances of token 𝑢 and 𝑣 respectively, while 𝑢′ [𝑎] and 𝑣 ′ [𝑎] de-
note corresponding balances after firing the edge. This indicates
that 𝑎 needs at least 𝑥 amount of 𝑢 token before swapping, and
will get at least 𝑦 amount of 𝑣 token after. The invocation of such
an operation increases 𝑎’s balance of token 𝑣 but decreases its
balance of token 𝑢.
• As mentioned in Section 2, many DeFis provide flash loans, a
unique feature that enables a (malicious or benign) user to bor-
row tokens without collateral, as long as the user pays back the
loan and its interest within one single transaction. To under-
stand the edge-borrow and edge-payback rules, we first introduce
an auxiliary predicate loan(𝑠1, 𝑠2, 𝑠3) for identifying flash loan
patterns in DeFi. In particular, the loan rule first looks for a state-
ment 𝑠1 together with its corresponding flow. Following 𝑠1, a
callback statement 𝑠2 is then invoked to register a callback func-
tion 𝑔, which allows the borrower to execute dedicated business
logic and produce another flow (from statement 𝑠3) that pays the
original loan. Once a loan pattern is established, the edge-borrow
and edge-payback will be triggered simultaneously and generate
corresponding borrow and payback edges. As tokens borrowed
could come from different sources, we model the type of token
to borrow from and return to using the special node 𝜖 .
• Flows of tokens from the special address • are directly translated
into mint edges via the edge-mint rule. The edge goes from 𝜖 to
𝑢 token with constraints ensuring sufficient 𝑢 tokens after the
call. Similarly, flows of tokens to the special address • directly
construct burn edges via the edge-burn rule.
• Other flows that do not fall into the above categories will gen-
erate transfer edges via the edge-transfer rule. Specifically, give
a flow predicate flow(𝑢, 𝑥, 𝑎, 𝑏), the rule generates a token flow
edge (from token 𝑢 to other participants’ token clustered in 𝜖)
labeled with the transfer operator. The constraint on the edge

Algorithm 1 Attack Synthesis
1: procedure AtkSyn(𝐷,𝑆0,𝜓 )
2: Input: DeFi 𝐷 , Initial State 𝑆0, Attack Goal𝜓
3: Output: Attack Program 𝑃 or ⊥
4: 𝜅 ← ⊤ ⊲ initialize knowledge base
5: 𝔾← GraphGen(𝐷,𝑆0 ) ⊲ construct token flow graph
6: while 𝑃 ← SketchGen(𝑆0,𝜓,𝔾, 𝜅 ) do ⊲ enumerate AFL sketch
7: 𝛿 ← CnstGen(𝜙, 𝑅) ⊲ generate constraints from sketch
8: while 𝜇 ← solve(𝑆0 ∧𝜓 ∧ 𝜅 ∧ 𝛿 ) ) do ⊲ get model
9: if 𝑃 ← complete(𝑆0, 𝑃, 𝜇 ) then ⊲ attack instantiation
10: if 𝑃 (𝑆0 ) |= 𝜓 then ⊲ validate attack program 𝑃

11: return 𝑃

12: else

13: 𝜅 ← 𝜅 ∧ ¬muc(𝑃 (𝑆0 ) |= 𝜓 ) ⊲ update KB
14: return ⊥

𝜓 ::= 𝑒 | ¬𝜓 | 𝜓 ∧𝜓
𝑒 ::= 𝑝 ( ®𝑥, ®𝑐) | 𝑒1 ⋄ 𝑒2 | 𝑒1 ⊙ 𝑒2

𝑥 ∈ variables 𝑐 ∈ constants 𝑝 ∈ predicates
⋄ ∈ {+,−, ∗} ⊙ ∈ {=, ≥, <}

Figure 7: Syntax for attack goal language. ®𝑥 and ®𝑐 represent
none or more parameters.

asserts that ➀ the sender should have sufficient tokens and ➁

the sender’s remaining 𝑢 tokens decrease after the call.

6 Attack Synthesis

Like prior sketch-based synthesizers [29, 53, 56], Foray synthesizes
candidate attacks through sketch generation and completion. The
core insight behind Foray’s synthesis algorithm is two-folded. The
search space of sketch generation is constrained by graph reachabil-
ity over a DeFi’s TFG (Section 6.2), and the state explosion problem
in sketch completion is mitigated by our domain-specific compila-
tion rules over AFL’s properties (Section 6.3). In what follows, we
first give an overview of Foray’s synthesis algorithm (Section 6.1),
followed by our attack sketch generation (Section 6.2) and sketch
completion (Section 6.3) algorithms.

6.1 Overview of the Synthesis Algorithm

Algorithm 1 shows Foray’s top-level attack synthesis algorithm.
Given a DeFi protocol, its initial state, and an attack goal (in first-
order logic), the synthesis algorithm incorporates a two-phased
loop, where phase one (line 6) enumerates attack sketches and
phase two (line 8) completes concrete attack programs.
Initial state and attack goal. Figure 7 shows our specification
language for expressing initial states and attack goals. Initial states
and attack goals are expressed through logical expressions over
storage variables 𝑥𝑖 or constants 𝑐 in the DeFi environment, e.g.,
user balances (𝐵usdce𝑡2

), blockchain timestamps, msg.sender etc. A
complex logical expression 𝑒 can be composed by arithmetic and
logical operators over atomic expressions and custom predicates.
Foray converts attack goals into their corresponding first-order
logic formulas via syntax-directed translation. For queries that refer
to symbols and quantifiers in the program, Foray uses skolemiza-
tion to make them quantifier-free or reject them otherwise.
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Algorithm 2 Attack Sketch Enumeration
1: procedure SketchGen(𝑆0,𝜓,𝔾, 𝜅)
2: Input: Initial State 𝑆0, Attack Goal𝜓 , TFG 𝔾, Knowledge Base 𝜅
3: Output: Attack Sketch 𝑃 or ⊥
4: Assume: 𝔾 = (𝕋,ℙ,𝔼,Φ)
5: 𝑅 ← {} ⊲ initialize reachable path as ordered set
6: 𝑇,Ω ← init(𝔾, 𝑆0 ) ⊲ initialize token worklist𝑇 and constraint

store Ω
7: while choose 𝑡 ∈ 𝑇 do ⊲ choose and remove a token from𝑇

8: 𝐸 ← {𝑒 | ∀𝑒 ∈ 𝔼 . 𝑒 ≡ edge(𝑡, ∗, ∗, ∗) } ⊲ neighboring edges
9: for each 𝑒 ∈ 𝐸 do

10: if unsat(Ω ∧ 𝜅 ∧ 𝑒.Φ) then continue

11: 𝑇 ← 𝑇 ∪ {𝑒.out} ⊲ include output node to worklist
12: Ω ← Ω ∧ 𝑒.Φ ⊲ update constraint store
13: 𝑅 ← 𝑅 ∪ {𝑒 } ⊲ add edge to reachable path
14: if 𝛼 (𝜓 ) ⊆ 𝑇 then

15: 𝑃 ← (𝑒.op | ∀𝑒 ∈ 𝑅) ⊲ convert graph to sketch
16: return 𝑃

17: return ⊥

The main loops. Using the rules in Figure 6, the algorithm first
constructs a token flow graph from the given DeFi protocol and
initial state (line 5). It then invokes an enumeration procedure
SketchGen (Section 6.2) that iteratively searches for candidate
attack sketches 𝑃 (line 6). Each sketch 𝑃 is then compiled by Cn-
stGen into constraints 𝛿 that form SMT queries whose solution
corresponds to the choices of missing arguments in the attack
sketch (line 7). Foray enumerates the solution (a.k.a. model) of
these queries (line 8). Then, Foray completes the attack sketch 𝑃

and transforms it into a concrete attack program 𝑃 through direct
syntax transformation (line 9). The algorithm then validates the
effectiveness of the attack, by executing it from the initial state and
checking whether the attack goal is satisfied (line 10). It returns the
concrete attack program 𝑃 upon passing the validation; otherwise,
it invokes a conflict-driven clause learning (CDCL) call (line 13)
and moves to the next available candidate.
Conflict-driven learning and knowledge base. To avoid past
mistakes, the algorithm also incorporates a knowledge base 𝜅 (line
4) that keeps track of constraint clauses that are responsible for each
failed validation (line 13).1 Similar to previous works on conflict-
driven program synthesis [16, 29], this allows Foray’s synthesis
algorithm to avoid previously failed cases (by associating the “root
cause” with corresponding constructs in a candidate program) and
refine them for better candidates. As such, the knowledge base 𝜅 is
passed as the argument of sketch generation (line 6).

6.2 Attack Sketch Generation via Graph

Reachability Analysis

To generate an attack sketch, Foray performs reachability analysis
over the TFG and enumerates a reachable path that consists of
multiple edges in the TFG. The path points from some initial token
node (typically 𝑣𝑜𝑖𝑑 , indicating the attacker does not hold that
token) to a target token node that the attacker aims to acquire.
Here, each edge is attached with an AFL operator 𝑝 and a behavioral

1muc stands for “minimum unsat core”. This corresponds to the feature of unsat core
computation, which is broadly available in modern SMT solvers.

constraint Φ that encodes the pre- and post-condition of triggering
𝑝 (Figure 6).
Goal-directed reachability analysis. An attack goal𝜓 in Figure 7
specifies a logic formula over account balances with target token(s)
of interest to the attacker. To satisfy the goal, a feasible sketch has
to end up with states that "produce" the target token(s) in 𝜓 , by
firing a sequence of AFL operators in a path 𝑅. Formally speaking,
a feasible sketch corresponds to a path in the token flow graph that
satisfies the following conditions:

(1) Satisfiability condition: whether the behavioral constraints
Φ along the path 𝑅 can be satisfied, and

(2) Coverage condition: whether the path 𝑅 covers the target
token(s) in the attack goal (denoted by 𝛼 (𝜓 )).

Sketch enumeration. Given a token flow graph along with its
initial state, attack goal, and knowledge base, the algorithm returns
an attack sketch 𝑃 corresponding to a reachable path. It consists
of a sequence of AFL operators on tokens defined in the TFG. The
algorithm’s main loop (line 7-16) is based on a worklist mechanism
that gradually refines the current path until a reachable one is
constructed. Initially an empty path 𝑅, together with the token
worklist 𝑇 and constraint store Ω is created (line 5-6), where 𝑇 is
initialized as tokens that the attacker holds, and Ω stores constraints
converted from initial state 𝑆0. If the attacker does not hold any
tokens in the TFG, we initialize 𝑇 with 𝜖 .

At each step of the main loop, a token 𝑡 is first chosen from the
worklist 𝑇 (line 7). Then, for each edge 𝑒 that starts from 𝑡 (lines
8-9), the algorithm ensures the satisfiability condition is met by
checking the conjunction of three sets of constraints using the Z3
solver (line 10); otherwise, it continues with the next available edge.
For a satisfiable edge 𝑒 , the algorithm updates the token worklist
by adding its output token 𝑒.𝑜 , the constraint store by adding its
constraint 𝑒.𝜙 (the constraint of triggering its corresponding oper-
ator), and the reachable path set 𝑅 by adding 𝑒 (lines 11-13). Then,
it checks for the coverage condition by seeking the existence of
target tokens from 𝑅 (line 14). The path 𝑅 is finally converted into
an attack sketch 𝑃 and return if the coverage condition is met (line
15); otherwise, the algorithm keeps trying for the next pair token 𝑡

and edge 𝑒 until it finds a satisfiable one or terminate by exhaustion.
Note that every time a valid sketch 𝑃 is found and returned, the
following lines in Algorithm 1 will be invoked. If 𝑃 fails to achieve
the attack goal, the corresponding root cause will be added to 𝜅

and fed back to SketchGen. The 𝑅, 𝑇 , Ω will be reinitialized for
generating a new sketch and 𝜅 ensures that the algorithm avoids
the previously failed sketches.

Example 6.1 (Attack sketch generation). In Figure 3(d), a reachable
path on the token flow graph begins at the 𝜖 node, representing a
common scenario where the attacker initially possesses no tokens
and must borrow from other entities (❶). Navigating through the
graph (❷ - ❸), the attacker is then required to repay the borrowed
tokens to prevent execution failure by ending with calling payback
and going back to the start node . The sequence of corresponding
operators (borrow -> swap -> payback) along this generated path
constitutes a viable sketch candidate for executing the attack.
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6.3 Sketch Completion via Domain-Specific

Compilation

We aim to compile the sketch into a constraint system whose solu-
tion results in the completion of an attack program. In particular,
using our AFL semantics, we derive a domain-specific compilation
that translates the invocation of each AFL operator into high-level
constraints. Our constraints are much easier to solve as they only
track the side effects of AFL operators over the attacker’s account
balances and filter out low-level semantics of the original DeFi.

Figure 8 shows the inference rules for generating constraints
of different AFL operators defined in Figure 4. The rules derive
judgments of the form 𝑝 ⇓ 𝐶 , where 𝐶 corresponds to the set of
constraints obtained by symbolically evaluating an AFL operator 𝑝 .
For simplicity, we use two macros ↑(𝑢, 𝑎, 𝑥) and ↓(𝑢, 𝑎, 𝑥) to denote
the constraints for describing a balance increase and decrease of
amount 𝑥 of the token 𝑢 at address 𝑎, which compiles to 𝑢′ [𝑎] =
𝑢 [𝑎] + 𝑥 and 𝑢′ [𝑎] = 𝑢 [𝑎] − 𝑥 , where 𝑢 [𝑎] and 𝑢′ [𝑎] denotes the
balance of token 𝑢 for address 𝑎 before and after evaluating the
corresponding operator 𝑝 .

Each inference rule in Figure 8 models the change of account
balances caused by the corresponding AFL operator. For instance,
the c-transfer rule generates constraints to assert the increased and
decreased amounts of recipient and sender, respectively. The c-swap
rule states that from a sender’s view (address 𝑎), the balance of its
source token will decrease and its target token will increase. The
recipient’s (address 𝑏) case is the inverse.

In addition to modeling balance changes, the rules also model
financial features for certain operators. For example, for swap opera-
tor, besides the macro 𝜍 (𝑎,𝑢, 𝑣, 𝑥,𝑦, 𝑏) that describes mutual balance
changes between address 𝑎 and 𝑏,2 we introduce 𝜌 (𝑥,𝑦) to model
the invariant between token pairs in modern automated market
makers (e.g., 𝑥 · 𝑦 = 𝑘 in Uniswap).

Meanwhile, for tokens that provide flash loans, the constraint
of an additional fee is modeled via 𝜗 (𝑥,𝑦), where 𝑥 is the amount
of flash loan and 𝑦 is the amount of repayment, and 𝑦 > 𝑥 in most
cases means additional interest is charged in payback.

Such constraints are inferred in a data-driven way via analysis
of massive amounts of real-world transaction data. Since the argu-
ments of an AFL operator may refer to local variables, we leverage
off-the-shelf pointer analysis to resolve their actual locations.

Given a sketch 𝑃 = (𝑝1, 𝑝2, ...), the constraints of 𝑃 are ob-
tained by 1) applying the inference rule on each 𝑝𝑖 and then 2)
conjoining all the resulting constraints together: CnstGen(𝑆0, 𝑃) =
foldl(𝑆0,map(𝑃, ⇓),∧).

7 Implementation

We have implemented Foray in Python with a back-end constraint
solver (Z3 [20] version 4.12.2). To fetch the concrete state and verify
the feasibility of the attack sketches, Foray integrates Foundry [32]
to interact with the blockchain. In what follows, we elaborate on
various aspects of our implementation.
Attack goal generation. In real-world cases, an attack who seeks
for financial gains would try spending no assets when launching
an attack (i.e., launching an attack with no cost), which requires

2This compiles to ↓(𝑢, 𝑎, 𝑥 ) ∧ ↑(𝑢,𝑏, 𝑥 ) ∧ ↓(𝑣,𝑏, 𝑦) ∧ ↑(𝑣, 𝑎, 𝑦) .

𝑝 ≡ transfer(𝑢, 𝑎,𝑏, 𝑥 )
𝑝 ⇓ ↓(𝑢, 𝑎, 𝑥 ) ∧ ↑(𝑢,𝑏, 𝑥 ) (c-transfer)

𝑝 ≡ burn(𝑢, 𝑎, 𝑥 )
𝑝 ⇓ ↓(𝑢, 𝑎, 𝑥 ) (c-burn)

𝑝 ≡ mint(𝑢, 𝑎, 𝑥 )
𝑝 ⇓ ↑(𝑢, 𝑎, 𝑥 ) (c-mint)

𝑝 ≡ swap(𝑎,𝑢, 𝑣, 𝑥, 𝑦,𝑏 )
𝑝 ⇓ 𝜍 (𝑎,𝑢, 𝑣, 𝑥, 𝑦,𝑏 ) ∧ 𝜌 (𝑥, 𝑦) (c-swap)

𝑝 ≡ borrow(𝑢, 𝑎,𝑏, 𝑥 )
𝑝 ⇓ ↓(𝑢, 𝑎, 𝑥 ) ∧ ↑(𝑢,𝑏, 𝑥 ) (c-borrow)

𝑝 ≡ payback(𝑢, 𝑎,𝑏, 𝑦)
𝑝 ⇓ ↓(𝑢, 𝑎, 𝑦) ∧ ↑(𝑢,𝑏, 𝑦) ∧ 𝜗 (𝑥, 𝑦) (c-payback)

Figure 8: Domain-specific constraint compilation rules.

appropriate choices of an attack goal. To achieve this, Foray auto-
matically gathers all stablecoins involved in the target DeFi protocol
from their on-chain storage variables, and includes them as poten-
tially hackable assets into the attack goal. Foray then tries to solve
a feasible attack program for each hackable asset.

For example, in the MUMUG protocol mentioned in Section 3,
users could spend USDCe to buy MU without any incentivization.
We abbreviate the beginning and ending balance of USDCe of an
attacker as 𝐵usdce𝑡1

and 𝐵usdce𝑡2
, accordingly. The contract invariant

can then be formalized as:

𝐵usdce𝑡2 − 𝐵usdce𝑡1 ≤ 0,

and the attack goal, formalized as (1), is to find a concrete exploit
that violates the above invariant.
Inference of token flow. Foray compiles a DeFi protocol (e.g.,
in Solidity) to its AFL representation via the following steps:
• A static analysis procedure (e.g., provided by Slither [28]) is in-
voked to first generate machine-readable intermediate represen-
tation (IR), e.g., Slither IR, of the DeFi protocol.
• Token flows can then be identified from the generated IR via stan-
dard interfaces, e.g., ERC20 [59], ERC721 [27], and ERC1155 [51]
in Solidity/EVM, and extracted on statement level, as described
by Figure 5.
• Foray then infers the corresponding AFL functions from the
identified token flows via rules defined in Figure 6.

8 Evaluation

All experiments are conducted on an Amazon EC2® instance with
an AMD EPYC 7000® CPU, 8 Cores, and 64G of memory running on
Ubuntu 20.04. We set the default timeout for the solver as 3 hours.
This number is obtained by observing the performance of Halmos.
In most cases, it either finishes the process at around 2-3 hours
or fails completely. Our evaluation plans to answer the following
research questions:
• (RQ1): How does Foray perform compared to SOTA tools?
• (RQ2): Is Foray effective in detecting known vulnerabilities?
• (RQ3): How effective are the two key designs of Foray and
whether Foray will introduce false positives?
• (RQ4): Can Foray be useful in detecting zero-day vulnerabilities?

8.1 Detecting Known Vulnerability (RQ1&RQ2)

Benchmark. To evaluate Foray on known vulnerabilities, we
select our benchmarks from the DeFiHackLabs dataset [23], which
keeps track of all DeFi hack incidents in the past. The DeFiHack-
Labs dataset records 389 incidents (at the time of the submission).
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We consider a subset of 200 benchmarks from Jan 2022 to July 2023
and exclude old benchmarks before 2022 because they depend on
outdated versions of the Solidity compiler. Furthermore, we ex-
clude benchmarks from one of these categories: a) closed source, b)
common vulnerabilities (as referred in Section 2) such as integer
overflow, reentrancy, access controls, etc., and c) insider hacks due
to losing primary keys or misconfiguration. Our dataset ends up
with 34 representative benchmarks. To get better insights into the
root causes of the benchmarks, we also categorize them into four
types of logical flaws: 1 Token Burn (TB), where the attack can
indirectly mint or burn the victim’s tokens by calling the corre-
sponding mint or burn function through other public functions
(similar to privilege escalation); 2 Pump & Dump (P&D): inflating
the price of a token through abnormal financial transactions (e.g.,
spitefully inflates the token price through substantial purchases); 3

Price Discrepancy (PP), which allows the attack to generate profits
based on the price difference of the same token pair in different
smart contracts (e.g., MUMUG); 4 Swap Rate Manipulation (SR):
the attack can directly or indirectly influence the swap rate be-
tween multiple token pairs in the same smart contract. In total, the
selected benchmark vulnerabilities have cost > $21M of losses.
Baseline. As discussed in Section 3, there are two possible existing
solutions for our problem. We select one SOTA tool for each solu-
tion as our baseline method. For sketch generation and completion,
we use our sketch generation method (given that no existing tool
can strategically generate sketches) and use Halmos [2], the SOTA
symbolic reasoning tool for DeFi, for sketch completion. We select
ItyFuzz [52], the SOTA tool for cross-contract fuzzing, as our base-
line method for the fuzzing solution. Note that an existing DeFi
security tool, DeFiPoser [66], also follows the sketch generation and
completion methodology but can only be applied to arbitrage (PP
in our benchmark). Due to its limited scope and lack of open-source
implementation, we do not include it as our comparison baseline.

We run Foray,Halmos, and ItyFuzz on the selected benchmarks
using the same computational resource and timeout limitmentioned
above.We report the runtime needed for eachmethod to detect each
selected vulnerability. We also report the average run time over the
success cases (the vulnerabilities that are detected within the time
limit) and the overall success rate to assess the effectiveness and
efficiency of each tool.
Results. Table 1 shows the main results of the three tools on the
selected 34 benchmarks. Here, the first two columns represent the
name and category of each benchmark. Columns 3-5 show the run-
ning time of Foray, Halmos, and ItyFuzz, respectively. We treat
“TO” and “NA” as failure cases. Foray successfully synthesizes the
attack programs for 79% benchmarks whereasHalmos and ItyFuzz
only solve 9% and 32% benchmarks, respectively. This result demon-
strates that by modeling financial logic, Foray is significantly more
effective in synthesizing DeFi logical bugs compared to SOTA tools.
These tools often struggle to capture application logic and rely on
brute-force solutions. Furthermore, Foray is also more efficient
than baseline approaches in that it takes an average time of 105.9
seconds to solve 27 benchmarks. In comparison, Halmos takes an
average time of 8,085.0 seconds to solve three benchmarks and Ity-
Fuzz takes an average time of 307.1 seconds to solve 11 benchmarks
from our dataset. Foray’s high efficiency benefits from its strategi-
cal sketch generation, which improves the search efficiency, and its

Table 1: Running time of Foray vs. Halmos and ItyFuzz on

the selected benchmark. “TO” means the tool cannot find a

valid attack for the corresponding vulnerability within the

time limit, and “NA” means the benchmark is not supported.

Name Category Foray ItyFuzz Halmos # of Sketches
AES TB 25.1s 27.0s TO 16
BGLD TB 25.1s 172.0s TO 16
BIGFI TB 25.1s 511.0s TO 16
BXH P&D 350.5s TO TO 38

Discover PP 325.1s NA 10251.3s 16
EGD P&D 25.6s 2.0s TO 56

MUMUG PP 300.2s NA 7681.7s 16
NOVO TB 25.1s 81.0s TO 16
OneRing P&D 25.3s TO TO 32

RADTDAO TB 25.1s 627.0s TO 16
RES SR 25.2s 3.0s TO 16
SGZ SR 25.2s TO TO 30

ShadowFi TB 25.1s 1757.0s TO 16
Zoompro SR 25.2s TO TO 36
NXUSD P&D TO TO TO –
NMB P&D 626.3s TO TO 21

Lodestar P&D TO TO TO –
SafeMoon TB 25.1s TO TO 16
Allbridge PP TO NA TO –
Swapos V2 SR 25.7s 182.3 6322.0s 80
Axioma P&D 25.7s TO TO 22
0vix PP TO NA TO –

NeverFall P&D 100.7s TO TO 16
SellToken02 P&D 26.0s TO TO 180

LW PP 25.1s NA TO 16
UN TB 25.1s 10.1s TO 16
CFC TB 625.2s TO TO 90

Themis P&D TO TO TO –
Bamboo TB 25.1s 5.2s TO 16
LUSD P&D 25.1s TO TO 16

RodeoFinance PP TO NA TO –
Carson PP TO TO TO –
XAI TB 25.1s TO TO 16

Hackathon TB 25.1s TO TO 16
Succ. rate 79% (27/34) 32% (11/34) 9% (3/34) Avg. #
Avg. Time 105.9s 307.1s 8085.0s 31.7

domain-specific compilation, which simplifies the constraints. The
"# of Sketches" column shows the number of sketches generated by
Foray. On average, 31.7 sketches are generated, with a maximum
of 180 for benchmark SellToken02 and a minimum of 16.

We took a closer look at Foray’s performance regarding differ-
ent categories of benchmarks and realized that Foray performs
better on TB and SR than PD and PP. Compared to other types
of vulnerabilities, PD and PP usually require a series of repeated
arbitrages and flash loans to reach the preset profit in the attack
goal. Therefore, the number of parameters and steps in those bench-
marks is larger and it takes longer for the synthesizer to enumerate
and verify candidate attacks.

8.2 Ablation Study and False Positive (RQ3)

Benefit of domain-specific compilation. Given that Halmos
and Foray use the same sketch generation procedure, Halmos is
equivalent to the ablative version of Foraywithout domain-specific
compilation. In other words, the difference in their performance as
shown in Table 1 is mainly caused by the different mechanisms of
symbolic compilation. Halmos uses a general-purpose compilation
to symbolically evaluate each benchmark using concrete semantics
of solidity. It only solves the three easiest benchmarks. Halmos
generates 1,360 and 2,179 constraints for Discover and MUMUG,
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function DeFiLender.flashloan(...) public {}
function DeFiLender.payback(...) public {}

function Uniswap.swap(...) public {}

// transfer and swapBack of victim
function transfer(to, amt) public {
    ...
    if (...) { swapBack(); }
    ...
}

function swapBack() internal {
    ...

    Uniswap.swap(victim, wBNB, amt_1, 0);
    ... 
}

function exploit() {
    // flashloan wBNB
    DeFiLender.flashloan(wBNB, 6.3e16);

    // trigger the bug by transfer
    Victim.transfer(address(0x0), 0);

    // swap: wBNB -> victim -> bUSD -> wBNB
    
    Uniswap.swap(wBNB, victim, 6.3e16, 1.2e12);

    Uniswap.swap(victim, bUSD, 1.2e12, 16.5e18);

    Uniswap.swap(bUSD, wBNB, 16.5e18, 6.5e16);

    // payback wBNB
    DeFiLender.payback(wBNB, 6.3e16);
}

(a)	The	(partial)	vulnerable	DeFi	protocol (b)	The	(simplified)	attack	program
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Figure 9: A zero-day vulnerability detected by Foray. “victim”

stands for the address of the token issued by the Victim

contract.

whereas Foray only generates 64 and 120 constraints, respectively.
This confirms that our domain-specific compilation significantly
reduces the amount of generated constraints, greatly simplifies the
solving process, and thus enables more successful cases.
Benefits of sketch generation. To further evaluate the effec-
tiveness of our attack generation algorithm, we replace it with a
straightforward breadth-first search and keep all other comments
the same. This method brute forces all operators to have a certain
length, starting from a length of one, where each operator is treated
as a program sketch. Our result shows that Foray times out on all
benchmarks. This is due to the straightforward solution enumerat-
ing a huge number of sketches, causing time out. The result verifies
the necessity of our sketch generation method in improving the
overall efficiency of the synthesis process.
False positives. We run Foray on 50 benign DeFi protocols, which
contain the 34 benchmarks in Table 1 after fixing the bugs and ten
popular DeFi protocols from Defillama (Lido [40], MakerDAO [43],
Aave [3], etc.). We treat the 10 popular protocols as benign because
they pass commercial auditing. Our results show that Foray timed
out (even after we increased the timeout time to 6 hours) on all
those benchmarks and did not find any attacks. This result validates
Foray’s capability of avoiding false positives.

8.3 Detecting Zero-day Vulnerability (RQ4)

The BNB chain has gained significant traction recently due to its
low transaction fees. However, it also accounts for 30% of recent
exploits, according to professional web3 security reports [11, 45].
To explore more potential issues, we applied Foray to 5,000 high-
profile DeFi protocols on the BNB chain and uncovered 10 pre-
viously unknown vulnerabilities, ranging from different types of
logical flaws (TB/P&D/PP/SR). These vulnerable DeFi protocols
have a total TVL of 1.1M USD, with the maximum, minimum, and
average TVLs being 398K, 2.7K, and 10.7K, respectively. In terms
of transactions, these protocols have a total of 1.4M transactions,
with the most popular one having 1.3M transactions and the most
recently deployed one having only 28 transactions. On average,
these protocols have 140K transactions, indicating their activity
levels.

This result confirms Foray’s capability of discovering diverse
unseen vulnerabilities, which are challenging for existing pattern
matching-based approaches (e.g., DeFiRanger [62] and DeFiTain-
ter [38]). Furthermore, the attack synthesized by our tool typically
involves more than five transaction actions, which are challenging

for general-purpose symbolic execution (e.g., Halmos and DeFi-
Poser [66]) and fuzzing tools (e.g., ItyFuzz).

All bugs found by Foray are reported to, confirmed, and fixed
by corresponding project developers through private channels. We
help project developers avoid financial loss via three ways:

• Use the administrative functions of the protocol to disable the
vulnerable public functions.
• Lock the protocol and return assets to users.
• Upgrade their smart contracts if possible.

Here, we illustrate one major vulnerability belonging to SR to
show how Foray synthesizes the exploit. Figure 9 shows the buggy
protocol and its exploit generated by Foray. The victim protocol has
a logical flaw in its token swap mechanism, i.e., swapBack function
that will cause a price change between victim and wBNB. Specifi-
cally, as shown in Figure 9(b), Foray generates a program with six
concrete function calls. Here is the logic to trigger the vulnerability:
1 The attacker takes a flash loan of some WBNB tokens by calling
DeFiLender.flashloan. 2 The attacker then calls Victim.transfer
to trigger the swapBack. As shown in Figure 9(a), the internal func-
tion swapBack swaps a certain amount amt_1 of victim to wBNB,
causing a devalue of victim and increasing value of wBNB in the
Uniswap contract. 3 the attacker leverage the price change to swap
more victim with the loaned wBNB. 4 5 Attacker sequentially
swaps Victim to bUSD and bUSD to wBNB. Given that the attacker
gets more victim than usual cases after 3 This enables the attacker
to get more wBNBs than its original loaned amount. 6 Eventually,
attacker calls DeFiLender.payback to pay back the flash loan and
keep the extra 0.2𝑒16 wBNB as the profit. The exploit program plun-
derers approximately 11% of the valuable stablecoins (BUSD) in the
liquidity pool as the profit. Foray spent 318.4 seconds synthesiz-
ing this program while neither Halmos nor ItyFuzz synthesizes a
comparable solution within the allotted time frame.

9 Discussion

Generalizability and scalability. As illustrated in Section 8,
Foray can synthesize attacks for various types of logical bugs that
current tools cannot detect. However, we acknowledge that there
are more types of deep logical bugs that our tool has not yet ad-
dressed [65, 67]. So far, these vulnerabilities have been discovered
by highly experienced human auditors. By extending our TFG con-
struction and compilation rules, Foray can be generalized to ad-
dress other vulnerabilities as well. For example, we can introduce
a higher order operator that conducts individual AFL operators
multiple times to handle erroneous accounting [65], which requires
accumulating a small computational discrepancy multiple times.
Similarly, Foray can also be generalized to common vulnerabilities
although they are not our focus. Our future work will extend Foray
to more types of deep logical vulnerabilities.

Section 8 demonstrates that Foray significantly outperforms
existing tools in synthesizing complicated logical bugs (e.g., the
zero-day bug in Section 8.3). However, we also notice that Foray
still fails to synthesize some ultra-complicated cases (Table 1) due
to the limited capability of the SOTA solver. In our future work, we
will explore hybrid approaches that leverage symbolic execution
and fuzzing for sketch completion to improve scalability. Note that
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our sketch generation would still be valuable in that it is challenging
for fuzzing to generate valid transaction sequences.
Manual efforts. So far Foray still requires certain manual efforts
for the generation of the attack goal and initial state specification,
as well as additional function mappings. Here, additional function
mappings refer to the auxiliary parameters and extra function calls
that must be incorporated when mapping an AFL action back to
concrete functions. These manual efforts are still way lower than
the amount of effort needed to summarize patterns from historical
attacks or manual auditing. In addition, pattern summarization
and matching have limited generalizability. Our future works will
explore automating these steps, such as leveraging deep learning to
generate specifications [39] and data mining to extract additional
function mappings [5].
Defense. As an offensive defense work, our ultimate goal is to
uncover more attacks before they actually happen and provide
such attacks to DeFi developers and users so that they can improve
their protocol or transaction safety. Foray’s capability of providing
exploits makes it easier for developers to analyze the root cause
and apply proper defenses. In general, we can patch the vulnerable
protocol or add run-time assertions. For example, we can fix the
bug in MUMUG by upgrading the way of deciding converting price
between MU and USDCe such that the price is robust against the
dramatic changes in their reservations.
DSL design choices and VM compatibility. The design of the
existing DSL (Figure 4) as well as the token flow graph (Section 5),
considers a balance among generality, efficiency, and the amount
of domain knowledge incorporated. As we show the flexibility of
Foray, in practice, one can always lean towards different design
choices (e.g., towards more precise domain knowledge) and adjust
the DSL and graph structure accordingly. Foray is instantiated
in Solidity in our evaluation, which is a programming language
supported by any EVM-compatible VMs. Since our DSL is language-
agnostic, with sufficient engineering effort, Foray can be instanti-
ated with other VMs (e.g., MoveVM [8], SVM [64], etc.) as well.
Extension with data-driven approaches. During synthesis,
Foray has to make decisions on which DeFi protocols and functions
to enumerate. While this is still an open problem, compared to a
brute-force enumeration, the key insight of Foray is to leverage
the token flow graph and attack goal to avoid enumerating choices
doomed to fail. Such a core insight naturally gives a potential fu-
ture extension that leverages data-driven approaches to explore
candidates that maximally align with the application logic. We be-
lieve the modularity of Foray’s procedures opens up new room for
enhancement and integration of data-driven approaches.
Complex path conditions and statements. Flow predicates
are used to construct token flow graphs, which are used by sketch
enumeration. Since a token flow graph over-approximates the be-
havior of a Solidity program, most complex path conditions and
statements, including modeling of access-controls are abstracted
away conservatively during the sketch enumeration phase and the
precision loss will be recovered in a goal-driven way during the
sketch completion phase via a CEGIS procedure.

10 Related Work

Smart contract vulnerability analysis. Existing tools for detect-
ing and analyzing smart contract vulnerabilities can be categorized
into either static analysis [4, 33, 34] or dynamic analysis [18, 37, 52]
approaches. Static tools conduct static analysis or symbolic execu-
tion to detect the common vulnerability (mentioned in Section 2)
that does not require a deep understanding of a DeFi protocol. No-
tably, Securify [57] analyzes a smart contract’s bytecode and finds
pre-defined patterns in its control flow graph corresponding to cer-
tain bug types. Slither [28] (also used in Foray) is the most stable
and frequently maintained static analysis framework to analyze
smart contracts. Notable symbolic execution tools include Manti-
core [46], Mythril [19], Solar [31], and Halmos [2] (the SOTA). As
demonstrated in Section 8, without effective sketch generation and
domain-specific compilation, solely relying on symbolic execution
cannot handle deep logical bugs in DeFi protocols. Most dynamic
and hybrid analysis tools are designed to be used within one smart
contract [10, 37, 47, 63]. Without an understanding of protocol logic,
the fuzzers that support cross-contract fuzzing (e.g., ItyFuzz [52])
cannot maintain their effectiveness in DeFi attack synthesis.
DeFi Security. The key challenge for DeFi security lies in the
larger size and broader scope beyond individual smart contracts
as well as the complicated semantics and logic involved. Aside
from Zhou et al. [67] which conducts a comprehensive summary
of existing DeFi attacks, existing works in this domain mainly fol-
low the methodology of summarizing patterns from existing attack
instances and building attack detection tools via pattern match-
ing. Specifically, DeFiRanger [62] lifts the low-level smart contract
semantics to high-level ones and uses them to summarize and ex-
press patterns. FlashSyn [17] leverages numerical approximation to
extract patterns from attack transaction sequences and detect sus-
picious transactions during run time. UnifairTrade [13] identifies
fragile swap pair implementations as patterns. DeFiTainter [38] con-
ducts taint analysis with taint source and target summarized from
standard smart contract API templates. The capability and scalabil-
ity of these approaches are constrained by the pattern extraction
step. In fact, the above approach can only detect a certain type of
price manipulation vulnerability that leverages swap to manipulate
token prices (e.g., MUMUG). More recent tools also extend this
methodology to other vulnerabilities. For example, DeFiCrisis [35]
introduces strategies for exploiting DeFi governance mechanisms
by arranging funding to gain profits. TokenScope [14] is designed
to detect any inconsistent and phishing behaviors in token applica-
tions. The technique that most aligned with Foray is DeFiPoser [66],
which proposes two strategies to facilitate the generation of exploit
for profit. The first strategy creates sketches using heuristics and
then completes them with an SMT solver, while the second strategy
identifies potential trades through a method known as negative
cycle arbitrage detection. Due to the limitation in sketch gener-
ation, this tool can only work with arbitrage detection, whereas
Foray can be applied to a variety of DeFi protocols, detect different
financial flaws, and synthesize complex trading sequences.
Attack synthesis and exploit generation. The synthesis of
cyber-attacks and the automated generation of exploits have been
subjects of significant research interest, aiming to understand and
mitigate security vulnerabilities. The seminal work, AEG [6], used



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hongbo Wen et al.

symbolic execution techniques to generate the exploit for the shell
program. Attack synthesis techniques have been applied to many
domains, such as Mayhem [12] using concolic execution for Linux
Kernel, Intellidroid [60] using dynamic analysis and fuzzing for An-
droid, HeapHopper [26] using boundedmodel checking forMemory
allocator, AASFSM [48] using NLP techniques for TCP and DCCP
protocols and etc. Symbolic execution is a well-adopted technique to
generate a specific exploit, which creates a set of constraints based
on the original program and then solves them by delegating SMT
solvers. Compared with a general symbolic execution technique,
Foray first benefits from general financial knowledge to eliminate
the search space of synthesis efficiently, then do the domain-specific
compilation to generate more lightweight constraints for existing
SMT solvers to solve, eventually becoming scalable in the DeFi
attack synthesis domain.

11 Conclusion

We present Foray, a highly effective attack synthesis framework
against deep logical bugs in DeFi protocols. Different from existing
tools that only detect common vulnerabilities in individual smart
contracts, Foray effectively models the financial logic in DiFi proto-
cols and synthesizes exploits against logical flows accordingly. Our
evaluation of 34 benchmark DeFi security attacks demonstrates
the advantage of Foray over existing smart contract bug-haunting
approaches. We further show that Foray can uncover ten zero-day
vulnerabilities from the BNB chain. Finally, we demonstrate the
effectiveness of Foray’s two key designs (sketch generation and
completion) and its capability of avoiding false positives. From
extensive evaluation, we can safely conclude that with domain-
specific modeling and compilation, symbolic reasoning can be an
effective approach for exploit synthesis against deep logical bugs
in DeFi protocols.
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A Glossary

Table 2: Summary of Notations

Variables Definition Reference

𝐷 the DeFi protocol definition 3.1
𝐿 the domain-specific language (DSL) definition 3.1
𝑆0 the initial and public blockchain state definition 3.1
𝜓 the attack goal definition 3.1

𝑃 (𝑆0) the resulting state after executing 𝑃 on 𝑆0 definition 3.1
𝑃 the attack sketch Section 3.2

𝑃 (𝑆0) the program state by evaluating 𝑃 on 𝑆0 Section 3.2
⋄ a hole in the attack sketch Section 3.2
𝜇 a symbolic representation in 𝐿 Section 3.2

𝑃 [𝜇/⋄] the sketch after filling the hole ⋄with 𝜇 Section 3.2
F the set of public DeFi functions accessible to the attacker Section 5.2
P the set of AFL operators Section 5.2
T the set of different tokens appeared in the given DeFi protocol Section 5.2
E the set of edges in TFG Section 5.2
Φ the set of behavioral constraints Section 5.2
𝜖 the special node in TFG Section 5.2
G the token flow graph (TFG) Section 5.2
𝑢 indicates a token contract Section 5.3

flow(𝑢, 𝑥, 𝑎, 𝑏) indicates 𝑥 amount of token 𝑢 flows from address 𝑎 to address 𝑏 Section 5.3
W the flow state Figure 5

W
𝑠
⇝ W′ the state transition fromW toW′ after executing the statement 𝑠 Figure 5
𝑢 [𝑎] the balance of token 𝑢 of address 𝑎 Figure 5
• the dead address Figure 5
𝜅 the knowledge base of constraint clauses Algorithm 1
𝛿 the constraints of a given sketch Algorithm 1
𝑅 a path consisting of a set of edges Algorithm 2
𝑇 the token worklist Algorithm 2
Ω the constraint store as the feedback Algorithm 2

𝛼 (𝜓 ) the coverage condition Algorithm 2
↑(𝑢, 𝑎, 𝑥) the constraint of describing a balance increase of 𝑥 of the token 𝑢 at address 𝑎 Figure 8
↓(𝑢, 𝑎, 𝑥) the constraint of describing a balance decrease of 𝑥 of the token 𝑢 at address 𝑎 Figure 8
𝑝 ⇓ 𝐶 program 𝑝 derives the constraint set 𝐶 by transition rules Figure 8

𝜍 (𝑎,𝑢, 𝑣, 𝑥,𝑦, 𝑏) the constraint describing balance changes between address 𝑎 and 𝑏 during swap operation Figure 8
𝜌 (𝑥,𝑦) the invariant between the balance 𝑥 and 𝑦 of two tokens Figure 8
𝜗 (𝑥,𝑦) the constraint of additional fee Figure 8

Table 2 summarizes the notations used in our paper and their initial appearances. These notations can be categorized into four types:
(1) Notations for defining the attack synthesis process.
(2) Notations for describing the token flow graph.
(3) Notations for indicating the inference rules of flow predicates.
(4) Notations for outlining the domain-specific compilation process.
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